FISSION-FRAGMENTS MASS DISTRIBUTION IN ^{246,249}BK HEAVY ACTINIDE NUCLEI $\underline{\text{R.Dubey}}^1$, G.Kaur², Ish Mukul¹, T.Banerjee¹, N.Saneesh¹, D.Siwal² M.Thakur², R.Mahajan², A.Jhingan¹ and P. Sugathan Issue related to formation of heavy 246,249 Bk actinide elements have been addressed through the systematic fission study of 11 B + 238,235 U, 14 N+ 232 Th reactions at sub barrier energies. The reaction products, mainly fission fragments were detected by two large area multiwire proportional counters. The present systematic observations include the experimental probes such as mass distribution, mass angle distribution, evaporation residue and fission cross section derived from angular distribution predictions. It is worthwhile to mention that 235,238 U (232 Ch (232 Ch (232 Ch (232 Ch (232 Ch) targets nuclei having prolate deformations and mass asymmetry (232 Ch (232 Ch) (232 Ch (232 Ch) (232 Ch) reactions lying above Businaro Gallone (B.G) point while 235,238 U (232 Ch) (232 Ch) is lying below the B.G point. Hence present systematic fission study in the 246,249 Bk actnide nuclei can help us to give intuitive understanding about the role of entrance channel variables like targets deformation, mass asymmetry in its formations. ¹Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi, India ²Department of Physics, Panjab University, Chandigarh, India