QUANTUM STATE SELECTIVE DECAY SPECTROSCOPY OF ²¹³Ra & ⁵³Co

<u>Ch. Lorenz¹</u>, L.G. Sarmiento¹, D. Rudolph¹, C. Fahlander¹, U. Forsberg¹, P. Golubev¹, R. Hoischen^{1,2}, N. Lalović^{1,2}, A. Kankainen³, T. Eronen³, L. Canete³, D. Cox³, J. Hakala³, A. Jokinen³, V. Kolhinen³, J. Koponen³, I. Moore³, P. Papadakis³, I. Pohjalainen³, J. Reinikainen³, S. Rinta-Antila³, S. Stolze³, A. Voss³, M. Block^{2,4,5}, J. Gerl², D. Ackermann², M.L. Cortes², M. Dworschak², T. Habermann², F.P. Heßberger^{2,4}, J. Khuyagbaatar², I. Kojouharov², N. Kurz², D. Nesterenko², H. Schaffner², L.-L. Andersson⁶, C. Droese⁷, M. Eibach⁵, J. Ketelaer⁵
¹Department of Physics, Lund University, Lund, Sweden
²GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
³Department of Physics, University of Jyväskylä, Jyväskylä, Finland
⁴Helmholtz-Institut Mainz, Mainz, Germany
⁵Institut für Kernchemie, Universität Mainz, Mainz, Germany
⁶Department of Physics, University of Liverpool, Liverpool, United Kingdom
⁷Universität Greifswald, Greifswald, Germany

By combining the mass resolving power of a Penning trap with the chargedparticle- γ multicoincidence setup TASISpec it was possible to investigate and revise the decay path of the ²¹³Ra ground state and the proton-decay branch of the 3174-keV, 19/2⁻ isomer in ⁵³Co. Together with comprehensive Geant4 simulations, high-resolution quantum-state selective decay spectroscopy enables insight in regions far from the line of β stability where the preparation of isotopically clean sources and thus unambiguous decay information becomes most essential and challenging.

The experimental scheme has been realized at GSI Darmstadt where a ⁴⁸Ca beam, provided by the UNIversal Linear ACcelerator (UNILAC), was impinging on a thin ¹⁷⁰Er target foil. The reaction products went through standard velocity filtering in the Separator for Heavy Ion reaction Products (SHIP), then the nuclear ground state of ²¹³Ra was mass-selected in SHIPTRAP and transferred to the TASISpec decay-station. Although ²¹³Ra has been subject to many studies, the α /EC-branching of the ²¹³Ra ground state has been unchanged since the first studies nearly 50 years ago. In a similar manner the Penning trap JYFLTRAP at the end of the IGISOL-4 facility at the University of Jyväskylä, Finland was utilized to provide a clean beam of ⁵³Co^m. It is the first direct measurement of its proton decay branching ratio after more then 40 years after its discovery.

These two experiments exemplify the immense potential of high-resolution quantumstate selective decay spectroscopy.