STRUCTURE OF THE STABLE XENON ISOTOPES AND THE SEARCH FOR AN E(5) CRITICAL-POINT NUCLEUS

<u>Prof Steven Yates</u>¹, Dr Erin Peters¹, Dr Timothy Ross¹, Dr Anagha Chakraborty¹, Dr Benjamin Crider¹, Dr Francisco Prados-Estevez¹, Dr Sharmistha Mukhopadhyay¹, Dr Stephen Ashley¹, Prof Marcus McEllistrem¹

Transitional nuclei have proven difficult to describe by conventional nuclear structure models; however, a possible interpretation is to depict such nuclei as undergoing a phase transition. A critical point has been proposed to exist within the shape/phase transition of the U(5), spherical, and O(6), gamma-soft rotor, limits of the Interacting Boson Model. The xenon isotopes exhibit such a transition and have, therefore, been proposed as a chain in which to search for the E(5) critical-point symmetry. The candidacy for an E(5) nucleus has been largely based on the decays of the excited 0^+ states, which for some of the xenon isotopes were not yet known. Inelastic neutron scattering reactions followed by γ -ray detection were performed at the University of Kentucky Accelerator Laboratory using highly enriched (>99.9%) 130 Xe, 132 Xe, 134 Xe and 136 Xe gases converted to solid xenon difluorides as scattering samples. From these measurements, low-lying excited states in these nuclei were characterized, new excited 0^+ states and their decays were identified, level lifetimes were measured with the Doppler-shift attenuation method, multipole mixing ratios were established, and transition probabilities were determined. This new information allows conclusions to be drawn about the occurrence of the E(5) symmetry within the stable xenon isotopes. 132 Xe was excluded as a representation of the E(5) critical-point symmetry; however, 130 Xe has emerged as an excellent candidate. This material is based upon work supported by the U.S. National Science Foundation under grant no. PHY-1305801.

¹University of Kentucky