SHARAQ SPECTROMETER: HIGH-RESOLUTION SPECTROSCOPY USING EXOTIC BEAMS AND REACTIONS

<u>S. Michimasa¹</u>, S. Ota¹, M. Dozono¹, M. Takaki¹, K. Kisamori¹, H. Miya¹, M. Kobayashi¹, Y. Kiyokawa¹, H. Baba², N. Fukuda², N. Inabe², S. Kawase³, T. Kubo², Y. Kubota², C.S. Lee¹, M. Matsushita¹, H. Sakai², A. Stolz⁴, H. Tokieda¹, T. Uesaka², K. Yako¹, Y. Yanagisawa², R. Yokoyama¹, K. Yoshida², S. Shimoura¹ ¹Center for Nuclear Study, the University of Tokyo ²RIKEN Nishina Center ³Kyushu University ⁴NSCL, Michigan State University

In this talk, we will present the recent developments at SHARAQ in RIBF for high-resolution spectroscopy. The SHARAQ spectrometer has high momentum resolution and satisfies the dispersion-matching condition with the High-Resolution beamline. We are continuously increasing the SHARAQ performance by developments of transport ion-optics and detector systems.

The first point of our development is event-by-event beam tagging with good position and timing resolutions with intense RI beams. Those resolutions are critical for ion-trajectory corrections, and the high-rate capability is an advantage for statistics. We have developed polycrystalline CVD diamond detectors for timing and low-pressure MWDC's for position measurements. The timing resolution of a diamond detector accomplished less than 10 ps(σ), and the position resolution of a LP-MWDC reached less than 100 μ m(σ). By using the detectors, we performed TOF-Bp mass measurement in the vicinity of ⁵⁴Ca and consequently achieved mass resolution (σ_m/m) of 1/9000.

The second point of our development is a coincident multi-particle detection at the spectrometer. The technique was used for the tetra-neutron state study by using the ⁴He(⁸He, ⁸Be) reaction and the 0⁻ state studies using the parity-transfer reaction (¹⁶O, ¹⁶F[0⁻]). These reactions are so exotic that the cross sections are very small. However, coincident two-particle detection and invariant mass reconstruction using particle trajectories are very effective to identify the reaction events with extremely good signal-to-noise ratio. Finally we successfully obtained clean energy spectra in those reactions against very small statistics.

We will explain details on our technical achievements with performed experiments.