RECENT RESULTS OF IN-BEAM GAMMA-RAY SPECTROSCOPY AT THE RIBF

Pieter Doornenbal¹

¹ RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

At the Radioactive Isotope Beam Factory stable primary beams are accelerated up to 345 MeV/nucleon and incident on a target to produce secondary beam cocktails with the fragment separator BigRIPS ranging from the lightest nuclei up to the uranium region. For in-beam gamma-ray spectroscopy, the secondary beams impinge on a reaction target at energies between 100 and 300 MeV/nucleon. Reaction residues are detected with the ZeroDegree spectrometer and gamma-rays detected with the NaI(Tl) based DALI2 array.

Since spring 2014, in-beam gamma experiments are also performed with the liquid hydrogen target system MINOS. This device includes a time projection chamber around the reaction target which enables the reconstruction of the vertex position, thus allowing for a very thick reaction target that result in a luminosity of about a factor three higher than with conventional solid reaction targets.

With MINOS and DALI2, an RIBF program called SEASTAR was initiated to systematically study 2_1^+ in neutron-rich nuclei ranging form 52 Ar to 110 Zr. In my talk I will present latest experimental results, which may include for example spectroscopy in the "Island of Inversion" region, shape-coexistence and deformation in proton and neutron-rich 88,90,92,94 Se and 70,72,94,96,98,100 Kr isotopes, the doubly-magic 78 Ni, spectroscopy beyond 132 Sn and other nuclei.