MULTIPLE COULOMB EXCITATION AND TRANSFER STUDIES OF NEUTRON-RICH NUCLEI BEYOND N=40

Stefanie Hellgartner¹, <u>Dennis Muecher</u>^{1,2,4}, Roman Gernhaeuser¹, Reiner Kruecken², Anna Katharina Nowak¹, Magdalena Zielinska³, Vinzenz Bildstein⁴, Jytte Elseviers⁵, Freddy Flavigny⁵, Malin Klintefjord⁶, Thorsten Kroell⁸, Alexander Lisetskiy⁷, Rudolf Lutter¹¹, Riccardo Orlandi⁵, Riccardo Raabe⁵, Sebastian Reichert¹, Peter Reiter¹⁰, Markus Scheck⁹, Michael Seidlitz¹⁰, Burkhard Siebeck¹⁰, Andres Illana Sison⁵, Tim Steinbach¹⁰, Nigel Warr¹⁰, Kathrin Wimmer¹²

- ¹Physics Department E12, TU Munich, 85748 Garching, Germany
- ²TRIUMF, Vancouver, BC, V6T 2A3, Canada
- ³CEA Saclay, 91191 Gif-sur-Yvette, France
- ⁴Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- ⁵KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
- ⁶Department of Physics, University of Oslo, N-0316 Oslo, Norway
- ⁷Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA
- ⁸Institute for Nuclear Physics,, TU Darmstadt, Germany
- ⁹School of Engineering, University of the West of Scotland, Paisley PA1 2BE, UK
- ¹⁰Institute for Nuclear Physics, University of Cologne,, 50937 Cologne, Germany
- ¹¹Department of Physics, LMU Munich, 85748 Garching, Germany
- ¹²Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

Of special importance for r-process nucleosynthesis is a fundamental understanding of shell evolution towards neutron-rich nuclei. The finding of a soft N=2 harmonic oscillator (h.o.) shell in the "Island of Inversion" (N=20) was the first discovery of changing shell structure in exotic nuclei. Recent experiments at the RIKEN Nishina Center (Japan) indicate a soft N=3 h.o. shell (Z=40) for extremely neutron-rich nuclei, which would effect the r-process flow in a dramatic way. We will discuss the underlying physics and report on our recent experiments at the radioactive ion beam facility ISOLDE using the high-granularity MINIBALL array and an upgraded silicon detector. In a series of studies we have probed the N=3 neutron h.o. shell gap around and beyond doubly-magic ⁶⁸Ni. In a multiple Coulomb excitation experiment using an unstable ⁷²Zn beam we were able to measure the collectivity of the shape-coexisting excited 0^+ state in ⁷²Zn in a direct way. Its low collectivity sheds light into the mixing of spherical and deformation driving configurations at N=40. The inverting role of proton $f_{5/2}$ and $p_{3/2}$ orbitals is understood from the properties of the tensor force. The detailed data set allows to extract triaxiality shape parameters for the ⁷²Zn ground state band, indicating an increased deformation beyond N=40 and clarifying on conflicting evaluated data. New shell model calculations also show that the classical $fpg_{9/2}$ configuration space has to be extended to accurately describe our new data after two-neutron transfer using a tritium target at ISOLDE, populating excited states in neutron-rich 74 Zn.